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Equations of State and Phase Equilibria of Stishovite and 
a Coesitelike Phase from Shock-Wave and Other Datal 

GEOFFREY F . DAVIES 

Seism%gicnl Laboratory, California Imtitute of Technology, Pasaderw, California 91109 

Shock-wave, static-compression (X ray), ultrasonic, thermal expansion, and thermodynamic 
data are simultaneously inverted to determine the equations of state of stishovite and a 
coesitelike SiG, phase. All the stishovite data except the thermal expansion data are 
satisfied by a Mie-Griineisen-type equation of state having a zero pressure bulk modulus K 
of about 3.50 ± 0.1 Mb, a pressure derivat ive dK/dP of 3.3 ± 1, and a Griineisen parameter, 
initially 1.25 ± OJ, that decreases slowly with compression. The volume coefficient of thermal 
expansion at ambient conditions is found to be 13 ± 1 X 1O-6jOK, in comparison with 

• 16.4 ± 1.3 measured by Weaver. Some Hugoniot data of Trunin et al. for very porous 
quartz have densities very close to the density of coesite. However, a calculation of the 
coesite-stishovite phase line shows that the coesitelike phase persists to about twice the 
predicted transition pressure at lO,OOooK. It is suggested that the discrepancy can be explained 
if this phase is interpreted as a liquid of about coesite density. 

r 

Since the discovery of the dense high-pressure 
silica polymorph stishovit e [Stishov and Popova, 
1961J and its subsequent identification both in 
natural silica from a meteor crater [Chao et aZ ., 
1962J and as the dense phase obtained in the 
shock-wave experiments of Wackerle [1962J 
by McQueen et al. [1963J, a yariety of ex
periments have yielded considerable data on 
stishovite. To date, these data include more 
shock-wave, sta tic-compression (X ray), thermo
dynamic, thermal expansion, and, yery recently, 
ultrasoni c data . These dat a, with their sources 
and other relevant information, are summarized 
in Table 1. A succession of a nal~'ses of these data 
has accompanied their accumulation r Anderson 
and Kanamori, 1968 ; Ahrens et ul., ]969, 1970]. 
This paper is another in that succession. 

The Griineisen parameter y is an important 
quantity that characterizes thermal effects in 
the equation of state. Ahrens et 01. [1970J, rp
turning to the method used b~' McQueen et al. 
[1963J, determinpd the \'alups of y at large 
compression from the difference in prp8sure 
between Hugoniots corresponding to diffprpnt 
initinl densities. This mrthod iii prefprablp to 
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that used by Anderson and Kanamori [1968j 
and Ahrens et al. [1969J, who used the Slater 
[1939J or Dugdale and MacDonald [1953J 
formulas for the volume dependence of y. 
These formulas have been severely criticized 
because they fail to take account of the fre
quently large pressure dependence of the shpar 
modes of vibration [Knopofj and Shapiro, 1969J. 

Fitting these results with the functional form 

'Y = 'Yo( V / VO)'4 (1) 

where V is the specific volume, A is a constant, 
and the subscript 0 denotes zero pressure, 
Ahrens et al. [1970J adjusted Yo until the vo'1-
um e coefficient of thermal expansion a, ob
tained from the identity 

ex = 'YPCp / K . (2) 

wlwre K . is determined from the shock-wave 
analysi8, agreed with the measured value. (The 
vnlup used was the preliminary value of a = 15 
X lO-"j OK , obtainpd from .T. S. Weaver (per
sonal communicat ion, 1969) , cf. Table 1.) In 
(2). K , is the isentropic bulk modulus, p is 
the densit~·, and Cp is the specific heat at con
stnnt pressure. 

Sincp t hnt an :l l~'sis , sr\'eral npw sets of data 
haY(> been publishpd. Thr data of Trunin et al. 
[19710J ~reatl~' pxtend thp pressure range of 
the Hugoniot d:l(:1. and those of Trunill et al. 
[1971bJ extend the range of initial porosities. 

.,I9:!0 
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TABLE la. Shock-Wave and Static-Compression Data for Stishovite 

Ini tial Pressure 
No. of Density, Range, 

Code Source Points g/cm 3 Mb 

Shoak-WalJe Data 
Sl Waaker~e [1962] 12 2.65 0.4 to 0.7 
S2 A~ltshu~er et a~. [1965] 3 2.65 0.6 to 2.0 
53 Trunin et a~. [1971a] 12 2.65 0.4 to 6.5 
S4 Waakerw [1962] 3 2.20 0.5 to 0.6 
S5 H. Shipman (private communication, 1969) 5 2.20 0.6 to 1.6 
S6 MaQueen [1968] 34 2.20 0.4 to 0.8 
S7 Trunin et a~. [1971b] 2 2.20 0.5 to 1.6 
S8 Jones et a~. [1968] 6 1.98 0.4 to 1.4 
S9 Trunin et aL [1971b] 6 1.77 0.2 to 2.3 
S10 Trunin et a~. [1971b] 3* 1. 55 0.3 to 0 . 6 

Statia-Compression Data 
Xl Liu et a~. [1972] 9 o to 223t 
X2 Bassett and Barnett [1970] 14 o to 85t 

*May be interpreted as coesite-stishovite mixture (see text). 
tValue in kilobars. 

The resultant wide spread of t he Hugoniots 
provides stronger constraints on y . Also, Mizu
tani et 01. [1972J have measured ultrasonically 
the compressional- and shear-wave velocit ies of 
stishovite, and thus another constrain t on K . 
is provided. 

In addi t ion to benefiting from t he newly 
available data and using a different form of 
the equation of state (discussed below) , the 
present analysis determines simultaneously the 
compressional and thermal parts of the equa
tion of state by adjusting simultaneously all 
free parameters to give a least-squares fi t to 
all the data. This procedure accomplishes iIn
plicit ly t he two sequential stages of the analysis 
of Ahrens et 01. [1970J . 

T1'unin et al. [1971b J noted that the Hugo
niots of their most porous quart z samples 
achieved densities significantly less than t he 
density of stishovite and that they extrapolated 
approximately t o the zero pressure density of 
coesite. On this basis t hey identified these 
Hugoniots as representing the coesite phase. 
Although coesite is stable at room tempera
ture ill the approximate pressure range 30-70 kb 
between t he stabili ty fields of quart z and stisho
vi te, coesite has not previously been observed 
in shock-wave experiments, the transformation 
usually being directly from quartz to stishovite. 
There are enough other coesite data (Table 2) 
that, when t hey are combined with t hese Hugo
niot data. and when it is assumed that t hey do 

TABLE lb. Other Data for Stishovite 

Source Quantity Value 

Mizutani et a~. [1972] Compressional-wave velocity ~ 11.0 km/sec 
Shear-wave velocity 8 5.50 km/sec 
Isentropic bulk modulus Ka 3.46 ± 0.24 Mb 

WeaIJer [1971] Volume coefficient of a 16.4 ± 1.3rK 
thermal expansion (3000 K) 

Ho~m et a~. [ 1967] Specific heat at constant Cp 7.15 x 106 ergs/g OK 
pressure (300 0 K) 

Kieffer and Kamb [1972] High temperature limit of eD • 11200 K 
Debye temperature 

Robie et a~. [1966] Density, zero pressure, PO 4.287 g/cm 3 

298°K 
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TABLE 2a. Shock-Wave and Static-Compression Data for Coesite 

Code Source 
No. of 
Points 

Initial 
Density, 

g/cm3 

Pressure 
Range, 

kb 

Shock-Wave Data 
511 T1'Unin et at. [1971b] 3 1. 35 119 to 322 
S12 T1'Unin et at. [1971b] 2 1.35 454 to 552 
S13 T1'Unin et at. [1971b] 5 1.15 65 to 477 

Static-Compression Data 
X3 Bassett and Barnett [1970] 

indeed represent coesite, the equation of state 
can be approximately determined. The success 
of this procedure seems to support the coesite 
identification, but other calculations suggest 
otherwise, as will be seen. 

Trunin et al. [1971b J also calculated ap
proximate Hugoniot temperatures and sug
gested t hat the boundary separating the coesite 
and stishovite fields in a pressure-temperature 
plot represented the coesite-stishovite phase 
t ransition line. Hugoniot temperatures have 
been recalculated here, and, in addition, the 
coesite-stishovite phase line has been indepen
dently calculated from t he equations of state 
of t he two phases, the coesite identification 
again being assumed. There is a large dis
crepancy between the two approaches. It is 
sugge ted that the new phase may in fact be 
a liquid of approximately the density of coesite 
rather than coesite itself. Because some of the 

11 o to 80 

properties of this liquid are unknown, it is 
necessary to proceed as if the phase were solid 
coesite and to examine the plausibility of t he 
results. 

ANALYSIS 

A complete equation of state must account 
for both compressional and thermal effects. 
Previous studies have accounted for these effects 
by invoking the Mie-Griineisen equation, in
corporating a finite strain description of com
pressional effects with various expressions for 
the Gruneisen parameter to describe thermal 
effects, as was di cussed in the introduction. 
The problem is to find an expression for y 
t hat does not involve overrestrictive assump
t ions and that has some t heoretical foundation. 

Thomsen [1970J has considered the question 
of incorporating the results of the theory of 
anharmonic lattice dynamics into finite strain 

TABLE 2b. Other Data for Coesite 

Source 

Skinner [19661 

HoLm et al. [1967] 

Kieffer and KaniJ [1972] 

Robie et al. [1966] 

Mizutani et aZ. [1972] 

Quantity 

Volume coefficient of 
thermal expansion (293°K) 

Specific heat at constant 
pressure (3000K) 

High temperature limit of 
Debye temperature 

Density, zero pressure, 
298°K 

Compressional-wave velocity 
Shear-wave velocity 
Isentropic bulk modulus 

Value 

a = 8.0 x 10-6/oK 

Cp = 7.46 x 106 ergs/oK 

aD • 11700K 

Po = 2.91 g/cm3 

Vp = 7.53 km/sec 
Vs = 4.19 km/sec 
Ks = 0.97 Mb 

. 
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theory. Lattice dynamics in t he fourth-order 
approximation lead, under certain assumptions, 
to the Mie-Griineisen equation [Leibfried and 
Ludwig, 1961], and Thomsen [1970] derived 
an expansion of this equation into the domain 
of fini te strain . His equation thus describes 
both compressional and t hermal effects . It is 
written in terms of a particular Lagrangian 
strain and involves six adjustable parameters. 
Subsequently it has been shown (G. F. Davies, 
unpublished manuscript, 1972) that analogous 
equations can be deri ved in terms of other 
strains and t hat the resulting form of t he Mie
Griineisen equation can be written in t he form 
of a co nventional fini te strain equation. 

In accord with these results, t he 3000 K 
isotherm will be represented in this study by 
the fourth-order Eulerian fini te strain equation 

P( V) = - 3Ko(1 - 2E)5f2 {E - !( Ko' - 4)E 2 

+ ! [KoKo" + Ko'(Ko' - 7) + -1..f!]E3) (3) 

where Ko is t he bulk modulus at zero pressure 
and 300oK, a prime denotes an isothermal 
pressure derivative, and 

E = HI - (V/ VO) -2f 3] (4) 

is t he Eulerian strain parameter . Neglecting 
the last term in (3) reduces it to t he familiar 
Birch-Murnaghan equation [e.g., Birch, 1952]. 

The part icular expression for y to be us~d 
here is derived (G. F . Davies, unpubli shed 
manuscript, 1972) by expanding to second 
order the squared eigenfrequencies of the lattice 
in terms of displacements of the atoms from 
their mean lattice posit ions and substituting the 
result in t he usual defini tion of y: 

l' 
dlnw 

d in V 

lattice potential energy to fourth order in terms 
of atomic displacements on which the fourth
order theory of lattice dynamics is based [Leib
fried and L udwig, 1961]. The quant ity w in 
(5 ) can be regarded as a characteristic eigen
frequency of the lattice. 

The consta nts g and h in (5) are parameters 
to be determined. They are related to measured 
quantities by the following series of equations 
(G. F . Davies, unpublished manuscript, 1972). 

g = -61'0 (7) 

h g [3(: 1: ; t. a + g - 1 ] (8) 

l' = VaKT/ C. (9) 

(a In 1') 
a In V T 

(a In c.) 
1 + OT - Kr' - a In V T 

(10) 

OT = -1 / aKT I(aKT/ aT) p (11) 

Here C. is the specific heat at constant volume 
and the subscript T denotes isothermal deriva
t ives. Equations 9 and 10 are thermodynamic 
ident ities [Bassett et 01., 1968] . 

An equation for Hugoniot pressure can be 
derived by combining the Mie-Griineisen equa
t ion with t he Rankine-Hugoniot conservation 
equations. In this way t he Hugoniot pressure 
can be related to any other t hermodynamic 
locus, such as an isentrope or an isot herm. An 
equation relating the Hugoniot pressure to an 
isentrope has been given by Ahrens et 01 . [1969] . 
Another equation relating Hugoniot pressure to 
the isotherm of the stati c lattice has been given 
by Thomsen [1970] . This equation has been 
generalized to include t he effects of a phase 
change and initial porosity (G. F. Davies, un
published manuscript, 1972) ; the result is 

(1 + e)(g + he) 

6(1 + ge + thi ) 
(
V' V V ) (5) Ph T - 2' - -:; = 4>(V) - 4>(Vo) 

Here e is another strain parameter defined as 

e = (V/ Vo/
f 3 

- 1 (6) 

The strain e is linea r in atomic displacements, 
so that a second-order expansion ill terms of e 
is identical to a second-order expansion in 
terms of atomic displacements. This result, in 
t urn, is consistent with the expansion of the 

+ V de/> _ U(Vo) + E, 
l' dV 

(12) 

where P, is the Hugoniot pressure, Yo' is the 
ini t ial density of the sample, Vo is t he zero 
pressure density of the phase in question, U 
is the thermal energy, E, is t he zero pressure 
phase t ransformation energy, and <p is t he po
tential energy of the stati c lattice . The quan-
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tity <p can be related to the expansion of the 
isotherm (equation 3) through the constants g 
and h (P.. F. Davies, unpublished manuscript, 
1972) . 

To summarize, expressions for the 3000 K 
isotherm and for the Hugoniots are given by 
(3) and (12) in terms of the six parameters 
Vo, Ko, Ke', Ko", (I, and h. The only essentially 
new thing in this analysis is the equation for 
y (equation 5). It should be noted that this 
equation gives a volume dependence of y qualita
tively similar to, for instance, (1) . In the pres
ent application th~ volume dependence of y is 
constrained by the Hugoniot data, and so the 
quantitative differences between (1) and (5), 
for instance, will be absorbed by their param
eters. Thus with (5) the value of 8T will be 
determined in this way (see equations 10 and 
11; all other quantities in (7)-(11) are con
strained by other aspects of the data). Because 
8T is otherwise unknown, the only doubt re
sulting from this procedure concerns the specific 
value of 8T • 

The specific heat at constant volume has been 
approximated in these calculations by the Debye 
model. A discussion of the inadequacy of the 
Debye model for a number of minerals has been 
given by Kieffer and Kamb [1972]. Their re
Stuts indicate that, for the purposes of this dis
cussion, the Debye model is not too inadequate 
for stishovite. It is less appropriate for coesite, 
but, in view of the other uncertainties of the 
coesite equation of state (see below) , it is an 
acceptable approx·imation. 

Hugoniot temperatures are calculated accord
ing to a method given by Ahrens et al. [1969]. 
For this calculation the volume dependence of 
the Debye temperature () D is required. The 
Debye temperature is proportional to the Debye 
cutoff frequency. Thus, for consistency with the 
treatment of lattice dynamics discussed earlier, 
the square of () D may be expanded to second 
order in e. Thus 

EQUATIONS OF STATE 

General . The procedure used here to deter
mine the equation of state was to calculate, 
according to the last section, all relevant 
quantities, such as Hugoniots, isotherms, bulk 
modulus, and so forth, and to adjust the equa-

tion-of-state parameters to obtain a weighted 
least-squares fit to the data. The weighting 
basically was done according to the estimated 
standard error of the data, but it was also ad
justed in some cases, as will be seen, to prefer
entially fit some of the data. 

Some general features of the silica Hugoniot 
data and a representative set of calculated 
Hugoniots and isotherms are illustrated in Fig
ure 1. Most of the Hugoniot data radiate from 
one of two points: the coesite or sitishovite 
zero pressure densities . The apparent zero pres
sure density of the data is the basi~ of the 
identification by Trunin et al. [1971b] of the 
Hugoniots of the two most porous silica samples 
as being in the coesite phase. This identification 
will be discussed subsequently; in the mean
time the phase will be referred to as 'coesite.' 

The Hugoniots of successively more porous 
silica, which start at zero porosity, become 
successively steeper up to the initial density 
po' of 1.77 g/cm" whose Hugoniot is nearly 
vertical on this plot. The 1.55-g/cm' initial 
density Hugoniot data are at densities lower 
than but fairly close to the zero pressure 300 0 K 
stishovite density, whereas the 1.35- and 1.15-
g/cm' initial density Hugoniots are less steep 
and centered about the coesite density. The 
po' = 1.55 g/cm' Hugoniot may represent a 
mixture of 'coesite' and stishovite [Trunin et 
al., 1971b]. This point will be discussed further 
below. 

The calculated Hugoniots shown in Figure 1 
(stishovite case 2 and 'coesite' case 1, dis
cussed below) reproduce these features fairly 
well. However, the coesite-stishovite transition 
is not predicted by these calculations. Thus 
stishovite Hugoniots corresponding to all seven 
initial porosities are shown. The three most 
porous Hugoniots are notable for having nega
tive slopes; there is a critical initial density for 
which the Hugoniot is vertical. The two most 
porous Hugoniots are shown as dashed lines, 
since they clearly fail to represent the corre
sponding data . The Po' .= 1.55 Hugoniot data ap
proach but do not agree very well with the 
corresponding calculated stishovite curve shown 
in Figure 1. Only the two most porous 'coesite' 
Hugoniots are shown. The other Hugoniots will 
lie between these Hugoniots and the 300 0 K iso
therm (shown as a short-dashed line) and clearly 
will not coincide with the corresponding data,. 

. ~ 
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Fig. 1. Hugoniot data of quartz a,nd porous quartz and calculated Hugoniots and 3000 K 
isotherms of 'coesite' and stishovite. Data sources are given in Tables 1 and 2, Calculated 
curves are from stishovite case 2 (Table 4) and 'coesite' case 1 (Table 6) , Numbers 
labeling curves indicate the initial density of the shocked sample, 

The details of the analyses will now be dis
cussed individually for stishovite and 'coesite, ' 
and the effects of assumptions made in the 
analyses will be noted, However, it will be seen 
that the preceding general picture is not grea~ly 

perturbed, 
Stishovite. The results of three different 

analyses of the stishovite data will now be given, 
In t he first case, standard errors of the pressure 
of each set of compression data (shock and 
static) were estimated, and the data were 
weighted accordingly , (The quantity minimized 
was ~(P" - P, )'ju;, where P: is t he calcu
lated pressure, P, is the observed pressure, u , 
is the estimated standard error, and the sum
mation is over all data points [e,g" Mathews 
cmd Walker, 1965].) Although Ko is known 
approximately from t he ult rasonic measure
ments of Mizutani et al. [1972J , we preferred 
to determine it independently from the com
pression data , Thus the quantities Ko, Ko', Ko" , 

and (aKj aTh were determined from the com
pression data, Vo and IX were taken from Table 
1, and C. was calculated from the Debye model. 
For t he calculation of C., the Debye temperature 
given by Kieffer and Kamb [1972J as the high 

temperature limit of the data of Holm et al, 
[1967J was used, The estimated standard errors 
are listed in Table 3, t he result ing values of t he 
parameters and t heir calculated standard errors 
are listed in Table 4 (case 1) , and the calcu
lated Hugoniots and t he 3000 K isotherms are 
compared with the Hugoniot data in Figure 2, 
It can be seen that this solution does not fit 
t he Hugoniots of the more porous samples 

Data 

Sl 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 
SlO 
Xl 
X2 

TABLE 3. Standard Errors Assumed 
for Stishovite Compression Data 

(All values in megabars.) 

Cases 
1, 2, and 4 

0.3 
0 .2 
0.2 
0.3 
0.3 
0.6 
0.3 
1.0 
1.0 
1.0 
0.015 
0.015 

Cases 
3 and 5 

0.5 
0.2 
0.1 
0.5 
0.5 
1.0 
0 . 3 
0.5 
0.1 
1.0 
0.015 
0.015 
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TABLE 4. Stishovite Parameters Found in Various Cases 

xo, (aXo/aT)p, a, d In y 
dIilV Case Mb Xo' XoXo" kb;oK 1O-6;oK Yo °T 

1 3.42 4.9 -2 -0.61 16.4* 1.61 5.7 10.9 
(0.09) (0.7) (5) (0.07) (0.1) (1. 6) (1. 6) 

2 3.50 3.5 -2 -0.30 12.9 1.30 3.1 6.7 
(0.15) (1.0) (3) (0.10) (1. 3) (0.15) (3) (3) 

3 3.55 2.8 -2 -0.20 12.0 1.22 1.9 4.7 
(0.13) (0.4) (1) (0.03) (0.5) (0.07) (0.7) (0.7) 

4 3.45* 3.8 -3 -0.32 13.3 1. 32 3.3 7.1 
(0.8) (3) (0.10) (1.1) (0.15) (3) (3) 

5 3.45* 3.0 -2 -0.20 12.2 1.22 1.7 4.7 
(0.2) (1) (0.02) (0.2) (0.09) (0.7) (0.7) 

2a 3.57 2.1 27 -0.23 12.6 1. 30 2.9 5.0 
(0.19) (1. 8) (20) (0.10) (1.1) (0.14) (2.5) (2) 

3a 3.50 2.2 14 -0.17 12.1 1.22 1.8 4.0 
(0.16) (1.0) (10) (0.05) (0.6) (0.08) (1) (1) 

Standard errors due to scatter in the data are given in parentheses. 
*Fixed value from Table 1. 

very well at all, partly because the data points 
on the lower-porosity Hugoniots have a greater 
density and partly because the value of Yo is con
strained to a high value by the value of a used 
and the value of Ko required to fit the lower
porosity Hugoniots. 

As a first step toward improving the fit of the 
higher-porosity Hugoniots, a was allowed to be 
determined by the compression data, along with 
the other parameters previously determined. 
The results are given in Table 4 (case 2) and 
illustrated in Figure I, the stishovite curves 
being those corresponding to the present case. 
Lowering the value of a to 13 X W-6/oK has 
lowered Yo to 1.3 and significantly improved 
the fit to the higher-porosity Hugoniots. How
ever, the full range of the Hugoniot data is not 
shown in Figures 1 and 2. The data of Trwnin 
et al. [1971a, b] extending up to 6.5 Mb for 
the initial densities of 1.77 and 2.65 g/ cm' are 
shown in Figure 3. The corresponding calculated 
Hugoniots and the 3000 K isotherm of the pres
ent Case are also shown (case 2). The 1.77-g/cm' 
Hugoniot curve does not fit the corresponding 
datum at 2.3 Mb very well. 

To further improve the fit to the higher
porosity Hugoniots, the Hugoniot data were 
assigned new standard errors to weight the 
porous data more heavily relative to the other 
data. The new set of standard errors is given 
in Table 3. The results are given in Table 4 
(case 3) and illustrated in Figures 3 and 4. 
Figure 3 in particular shows that the fit to 
the 1.77-g/cm" Hugoniot data has improved. 
The value of a has decreased further to 12 X 
1O-6j0K. 

The values of the zero pressure bulk modulus 
Ko range from 3.42 to 3.55 Mb for the three 
cases considered. These values fall within the 
range 3.46 ± 0.24 Mb given by Mizutani et al. 
[1972J for the isentropic bulk modulus de
termined from elastic-wave velocity measure
ments. The 300 0 K isotherms for these cases 
also agree well with the static-com pres ion data 
of Liu et al. [1972]. These data are shown in 
Figure 5, together with the three calculated iso
therms. Also shown are the static-compression 
data of Bassett and Barnett [1970J. These data 
have been discussed by Liu et al. [1972], who 
suggest that the five highest-pressure data points 
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Fig. 2. Hugoniot data of stishovite and calcu
lated Hugoniots and 3000 K isotherms from case 1 
(Table 4). Symbols are t~ose used in Figure 1. 

are systematically low because the anvils of the 
tetrahedral press used by Bassett and Barnett 
may have come into contact at about this pres
sure. These points were not used in the present 
analysis. The calculated isotherms agree with 
the remaining data within the scatter of the 
data. 
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Fig. 3. Very high-pressure Hugohiot data of 
stishovite and calculated Hugoniots and isotherms 
from case 2 (solid line) and case 3 (dashed line). 
Only the Hugoniots corresponding to initial den
sities 2.65 and 1.77 g/cm' are shown. Symbols are 
those used in Figure 1. 
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lated Hugoniots and 3000 K isotherm from case 3 
(Table 4). Symbols are those used in Figure 1. 

The last two cases were rerun with K. given 
the fixed value of 3.45 Mb, which gives an 
isentropic bulk modulus very close to that 
given by Mizutani et al. [1972]. (In all cases 
given here, the isentropic bulk modulus is about 
0.02 Mb greater than the isothermal bulk modu
lus.) The results are given in Table 4 (cases 4 
and 5). The changes from the previous solu
tions are small. The standard errors are cal
culated with the 0.24-Mb error given by Mizu
tani et al. for the bulk modulus. 

In view of the current discussion of the 
relative merits of the Lagrangian and Eulerian 
formulations of finite strain [Tho?nSen, 1970, 
1972 ; G. F. Davies, unpublished manuscripts, 
1972], the dependence of the preceding results 
on the form of the equation of state should be 
tested. This testing was done by using a 
Lagrangian isotherm [Thomsen, 1970; G. F. 
Davies, unpublished manuscript, 1972] but 
keeping (5) for y. This formulation does not 
correspond to the Lagrangian equation used by 
Thomsen [1970], who used a different expres
sion for y. This formulation has been discussed 
previously (G. F. Davies, unpublished manu
scri pt, 1972). In any case, using a different 
equation for y should yield a significantly dif
ferent value for (iJKj iJT)p only, for which 
we have no other control. Cases 2 and 
3 were repeated with the Lagrangian iso-
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thermo The results are given in Table 4 (cases 
2a and 3a). The values of Ko are comparable, 
those of K,f somewhat lower, those of KoKo" 
much higher, and those of the other parameters 
comparable to the corresponding values in cases 
2 and 3. In particular, the value of a is very 
little changed; it is still much lower than the 
value given by Weaver [1971J. 

Ahrens et al . [1970J interpreted the po' = 
1.98 g/ cm' data as indicating a reversal in the 
slope of the Hugoniot at about 1.2 Mb (Figure 
1). A criterion was given relating the density 
at which the slope of the Hugoniot becomes 
infinite to the value of y at that point : y = 
2/[ (p/ Po') - 1]. However, it can be seen 
from equation 12 for the Hugoniot that the 
Hugoniot pressure also becomes infinite at this 
density; in other words, the Hugoniot pres
sure asymptotes to infinity rather than 'bends 
over.' This interpretation biased the high
pressure values of y to lower values, since it 
favored an interpretation in which the Hugo
niots were crowded together at these compres
sions. The discrepancy ' between the results of 
Ahrens et al. [1970] and those of this study 
is due partly to the last effect, partly to the 
fewer data available at the time, and partly 
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Fig. 5. Static-compression data of stishovite 
compared with 300·K isotherms calculated from 
cases 1, 2, and 3. 

to the higher value of a used. Case 1 given 
here is closer to the solution of Ahrens et al. 
and shows similar effects. 

The main limitation of the present analysis 
is probably the use of an equation based on the 
Mie-Griineisen approximation, which allows no 
temperature dependence of y. At temperatures 
below the Debye temperature, y is probably 
temperature-dependent because of mode under
saturation, and, at very high temperatures 
(greater than several thousand degrees Kelvin, 
say), it is possible that we are dealing with a 
fluid phase (see below) having a different value 
of y. In connection with mode undersaturation, 
it is interesting to note that Nicol and Fong 
[1971], measuring Raman spectra, have ob
served a negative mode y for a mode of rutile, 
which is isostructural with stishovite. 

The temperature dependence of a is domi
nated by the temperature dependence of C. 
and possibly of y (see equation 2). Weaver 
[1971J notes that his value of { = (8a/ 8T)./ a' 
= 33 ± 17 seems too small ; it implies that 
(8y/ 8T) " = -5 X lO-,/oK, a value sufficient to 
reduce y to zero within 300°K. With (iJy/ 8T), 
= 0, Weaver e timates that { = 190 ± 20. If we 
take Weaver's mean value of a in the range 
300o-900oK (i.e., a = 18.6 X lO-,/oK) to 
apply to 600 0 K and combine it with the 300 0 K 
value of 13 X lO-%K foubd here, we get 
{ = 100 approximately. This value is inter
mediate, and thus a moderate value of (,8y/ 8T) " 
is implied. Of course, it has not been determined 
whether this value would be allowed by Weaver's 
data. 

To conclude this section, it appears that 
most relevant stishovite data, with the excep
tion of a, can be incorporated with reasonable 
accuracy into the Mie-Griineisen-type of equa
tion of state used here. Case 2 is the solution 
preferred by the author. Case 3 fits the Hugo
niot data better, but its reliance on the Mie
Griineisen equation may not be appropriate 
for the very high-temperature Hugoniot data. 
If it is preferred not to rely on the analysis of 
any of the porous Hugoniots, case 1 is an ap-
propriate solution. / 

'Coesite.' This section will assume that the 
Hugoniots of the most porous quartz samples 
represent coesite. The difficulties raised by this 
assumption and an alternative interpretation 
will be discussed in the next section. 
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Because of t he smaller range and quantity 
of 'coesite' data, it is not possible to determine 
as many parameters of t he equation of state 
as were determined for t he stishovite data. Be
cause t he data extend to only about 15% vol
ume compression, it is not necessary to ·use t he 
full fourth-order version of (3), and so t he {" 
term is here assumed to be zero. Because t here 
is not a large range in the init ial porosit ies of 
t he Hugoniot data, t he volume dependence of 
y, and hence (aKj aT) P , cannot be well deter
mined. Conversely, t he value of (aKj aT )p does 
not strongly affect t he equation of state in t his 
range. A value of - 0.05 kbj OK was t herefore 
assumed. This value of (aKj aT)p gives yalues of 
BT in the range 5-10, a range t hat seems reason
able on t he basis of a few other examples, in
cluding stishovite [e.g., Anderson et al ., 1968; 
Roberts and R uppin, 1971] . The values of 
Vo and ex were taken from Table 2, and C, was 
calculated from the Debye model. 

It can be seen from Figure 1 that t he Po' = 
1.35 gj cm" Hugoniot data are considerably 
scattered and t hat they do not t rend toward 
the coesite density of 2.91 gjcm" perhaps be
cause there has been a part ial conversion t o 
the stishovite phase. When t hey are compared 
to t he po' = 1.15 gj cm3 Hugoniot data, t he 
lower three points in particular are seen to 
deviate toward higher densit ies. Two cases 
were t herefore t reated, one including t hese 
t hree points, t he other excluding t hem. 

Ini t ially both Ko and Ko' were determined 
by t he Hugoniot and static-compression data. 
The results are given as cases 1 and 2 in Table 
6, case 1 excluding t he three doubtful Hugoniot 
points and case 2 including t hem. The standard 
errors used to weight t he compression data are 
given in T able 5. Case 1 is illustrated in Figure 
1, case 2 in Figure 6. The bulk moduli in t hese 
two cases are significantly above t he value of 
0.97 Mb measured ultrasoni cally by Mizutani 
et al . (H. Mizutani, private communication, 
1972) , and so a third case was run with Ko 
fixed at t his value and only Ko' determined 
by t he compression data (Table 6 and Figure 
6). It can be seen (Figure 6) that case 3 does 
not fit t he static-comp ression data of Bassett 
and Bamett [1970] very well, and it fal ls below 
most of the corresponding Hugoniot data. 

The scatter in t he Hugoniot data and the 
uncertainty in t heir interpretation are such that 

TABLE S. Standard Errors Assumed 
for the 'Coesite' Compression Data 

Error, 
Dat a MIl 

Sl1 0.20 
S12 0.10 
S13 0.10 
X3 0 .02 

t hey cannot definitely be said to be discordant 
with case 3, but the discrepancy between case 
3 and t he static-compression data seems to be 
significant. Because of this discrepancy, the 
equation of state of coesite must remain some
what uncertain at this stage. 

S iO , PHASE EQUILIBRIA 

By using t he equations of state just given, 
t he Gibbs free energies of 'coesite' and stisho
vite can now be calculated, and the 'coesite'
stishovite t ransit ion pressure can be calculated 
as a function of temperature by using t he 
condi tion t hat t he Gibbs free energies of t he 
two phases are equal at t he phase t ransit ion. 

For detailed comparison t he Hugoniot t em
peratures, which were calculated approximately 
by Trunin et al. [1971b] , have been calculated 
according to the method described earl ier . The 
results are plotted against Hugoniot pressure 
(Figures 7 and 8). I t is notable t hat t he 5.5-Mh 
point is over 40,OOooK and that t he po' = 1.77 
point at 2.3 Mb is over 30,OOO °K. The tem
peratures are changed by only a few per cent 
by using the different equations of state given 
in t he previous sections. A greater uncertainty 
in the points is due to the scatter in Hugoniot 
pressu res, but t his scatter would only cause 

TABLE 6. 'Coesi t e ' Par ameter s for Various Cases 

Ko, d I n y 
Case Mb Ko' (aKo/arJp* y d1nV 6T 

1 1. 27 5. 6 - 0.05 0 .4 3 -0. 04 4.9 
2 1.36 4 .1 - 0.05 0 .46 1.2 4.6 
3 0 .97t 7. 3 -0.05 0.33 -0. 15 6 .4 

*Assumed values (see tex t ) . 
t Fixed va1ue f rom Tab l e 2 . 
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Fig. 6. Hugoniot data of 'coesite' and calcu
lated Hugoniots and 300 0 K isotherms from cases 
2 and 3 (Table 6). Symbols are those used in 
Figures 1 and 5. 

the points to move along the Hugoniot locus, 
which in a P-T plot is approximately radial 
from the initial point. 

The boundary between the 'coesite' and 
stishovite fields (Figure 8) is closely defined 
by the Po' = 1.77 and Po' = 1.55 g/cm" Hugo
niot points, both of which show signs involving 
a mixture of the two phases, as was discussed 
earlier. 

50~--~1----r-1--~1----~1---~1~ 

• 
;:. 40 - -

'" o 

~ 
::> 
(; 

30 -
• -

• 
~ 20 t- • •• 

-• a. 
E 
'" I-

10 t--\-.i 
I) 

.: 
• • • 

-

OL-__ ~I ____ ~I ____ L-I ___ L-I __ ~I~ 
o 2 3 4 5 

Pressure , Mb 

Fig. 7. Calculated Hugoniot temperatures of 
stishovi te and 'coesite' versus Hugoniot pressure. 
Box is enlarged in Figure 8. Symbols are tho e 
used in Figure 1. 

The Gibbs free energy is defined by 

G = H - TS = U + PV - TS (14) 
where H is t he enthalpy and S is t he entropy. 
Here G has the property [e.g., Slater, 1939J 

(8Gj 8P)T = V (15) 
We wish to evaluate G at the state (P, V, T) , 
starting from the state (0, Yo, To) . (Atmos
pheric pressure can be ignored here.) This 
evaluation will be done via the state (Po, Yo, T) , 
where Po(T) = P(Vo, T) (i.e., by first raising 
the temperature at constant volume and then 
compressing isothermally). From (14) 

G(Vo, T) = G(Vo, To) 

+ [U(Vo, T) - U(Vo, To)] + Po(T)Vo 

- [TS(Vo, T) - ToS(Vo, To) ] (16) 

and from (15 ), upon integration, 

l
P (T) 

G(V, T) = G(Vo, T) + yep', T) dP' 
P.(T) 

(17) 

When t he difference between the Gibbs free 
energies of stishovite and coe ite at the state 
(Vo, To) are denoted by t,Go (i.e., 

where super cripts sand c denote stishovite and 
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Symbols are those used in Figure 1. 
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coesite, respectively) and 6.H. and 6.S. are de
fined similarly, (14) gives 

6.ao = 6.Ho - TollSo (18) 

The values of 6.Ho and 6.S. can oe found from 
the results of Holm et ai. [1967]. At 298°l{ 
6.H. = 10.58 kcal/mole = 7.36 X 10° ergs/g 
and 6.8. = -3.01 cal/moleoK = -2.09 X 
10" ergs/ gOK 

Now from (16), using (18), we obtain 

a'Cvo', T) - a·cvo·, T) = PoCT)CVo' - Vo·) 

+ U'CVo', T) - U'CVo" T) 

- T[S'CVo' , T) - S' CVo', T)] (19) 

To evaluate this expression we need U and S 
as functions of T for both stishovite and coe
site. These functions are known accurately 
[Holm et aZ ., 1967] only up to 3500 K How
ever, the clifference U'(Vo', T) - U'(V:, T) 
and the analogous difference for S can be ap
proximated as being constant above about 350°l{ 
for the following reasons. The specific heats Cp 

of stishovite and coesite given by Holm et ai. 
[1967] converge toward each other above about 
1500 K Also, at 300oK, Cp differs from C. by 
about 0.6% for stishovite and by about O.l % 
for coesite. Thus t he Cu will also converge at 
higher temperatures. Because U and S are 
integrals of C., U· - U· will approach a con
stant value at higher temperatures, as will 
S' - S·. Thus t he differences in U and S in 
(19) can be replaced by their values at 298°K 
When it is noted, finally, that. 6.Uo Z 6.Ho, 

(19) becomes 

a ' cvo', T) - a'cvo·, T) 

= Po(Vo' - Yo') + 6.Ho - T6.So (20) 

The integral in (17) is more easily evaluated 
here by not ing that 

J.
p fV' 

V dP' P(V', T) dV' 
p. v 

+ VP - VoPo (21) 

Equations 17, 20, and 21 and equation 3 for 
an isotherm allow the Gibbs free energies of 
'coesite' and stishovite to be compared. 

The phase line resulting from these calcula
tions is shown in Figure 8. The error bars 
represent variations due to the use of the a1ter-

native equations of state given in the previous 
sections. The lllcertainty due to the approxi
mations used for U· - U' and S· - S· is 
difficult to estimate, but it should not be greater 
t han a few per cent. Errors of 5% in U· - U' 
and S' - S' would cause errors of about 1 
and 3%, respectively, in t he calculated transi
t ion pressure at 10,OOooK 

As can be seen in Figure 8, the calculated 
phase line deviates considerably from the line 
separating the 'coesite' and stishovite Hugoniot 
fields. The difference is about a fa ctor of 2 in 
temperature, which would seem to be well out
side the range of uncertainties of the calcu
lations. If this result is correct, the phase ob
tained in t he shock-wave experiments is outside 
the coesite stability field . It would be surprising 
if this phase were coesite, since it would be 
expected t hat the high temperat.ures involved 
would promote the t ransition to stishovite. 

An alternative interpretation of the data is 
suggested by re-examining Figure 8, in which 
the lower-pressure quartz-liquid-gas region of 
the phase diagram is also shown [Levin et ai., 
1969 ; JANAF Tables, 1965]. The 'coesite'
stishovite Hugoniot boundary intersects the 
calculated phase line at about 2500oK, which 
is comparable to the melting temperature of 
quartz . I s it possible that the 'coesite' is the 
liquid phase? 

The plausibility of this hypothesis can be 
tested by using the Clausius-Clapeyron relation 
for t he slope of a phase line: 

dP / dT = 6.S/ 6. V (22) 

where 6. denotes t he change t hrough the phase 
t ransit ion . Let us apply this at t he hypothetical 
coesite-stishovite-liquid triple point at 125 kb 
and 25000 K We know that the volumes of the 
coesite and the liquid must be very similar 
at this pressure because of the agreement be
tween the coesite stat ic-compression data and 
the 'coesite' Hugoniot data (Figure 6). If the 
difference in their volumes is zero, (22) shows 
that the coesite-liquid phase line is horizontal in 
Figure 8 (also shown by line 1 in Figure 9, 
which illustrates the relevant region of the 
phase diagram in more detail ). If the difference 
in volumes is not zero, the slope of the phase 
line can be estimated as follows. The coesite
stishovite phase line is still fairly well deter
mined below the triple point. The coesite-
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stishovite volume difference is about 0.09 cm3/ g. 
The entropy dill'erence is, then, from either the 
slope of the phase line (0.02 kb/ oK) and (22) 
or the approximation made in the previous 
section, about 2 X 10" ergs/ g°K. When the 
liquid-stishovite volume difference is assumed 
to be also about 0.09 cm3/ g, the slope of the 
liquid-stishovite phase line (0.06 kb/ oK) and 
(22) give the liquid-stishovite entropy difference 
as about 5 X 10" ergs/ g°K. When these results 
are combined, the liquid-coesite entropy dif
ference is about 3 X 10" ergs/ g°K. From Fig
ure 6 we can estimate a reasonable maximum 
volume difference between the coesite and the 
liquid to be about 0.01 cm3/ g. Equation 22 
then gives a slope of about 0.3 kb/ oK (line 2 
in Figure 9). Line 3, which has the same slope 
as the stishovite-liquid phase line, would imply 
that coesite has a volume similar to that of 
stishovite, which is clearly unreasonable. 

Lines 1 and 2 both extrapolate to the range 
of melting temperatures of quartz. There is a 
difficulty, though, since a similar set of relation
ships would hold at the quartz-coesite-liquid 
triple point, and thus we would be led to pre
dict a slope of the quartz-liquid phase line 
rather different from the one shown. However, 
we may observe that the liquid would have 
to vary continuously from a density of about 
2.2 g/ cm" at zero pressure (the density of fused 
quartz) to about 3.1 g/ cm3 at 100 kb. This 
variation would cause the phase lines to be 
concave downwards (Figure 9) in this range and 
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Fig. 9. Hypothetical silica phase diagram. Lines 
1, 2, and 3 correspond to different assumptions 
about the relative densities of the coesite and the 
liquid (see text). 

might allow these relationships to hold without 
contradiction. 

The preceding discussion is intended as a 
plausibility argument . It must be considered a 
serious possibility that a coesitelike liquid phase 
was produced in the shock-wave experiments. 

To return , finally, to the coesite-stishovite 
phase line below the hypothetical triple point, 
the calculated transition pressure at 300 0 K is 
78 kb. Thi value is in reasonable agreement 
with that of 69 kb estimated by Akimoto and 
Syono [1969] from their experimental results. 
It may also be compared with their values of 
85-95 kb calculated by using a rough estimate 
of the coesite compressibility. 

The average slope of the phase line is about 
0.023 kb/ oK, which compares very well with 
the value of 0.024 kb/ oK found by Akimoto 
and Syono [1969]. 

Note added in proof. An analysis by E. K. 
Graham (unpublished manuscript, 1972) of 
some of the stishovite Hugoniot data analyzed 
here yielded the values K~ = 3.35 Mb, K': ,= 
5.5, and y~ = 1.64. A high value of K': was also 
obtained by Ahrens et al. [1970] (Ko = 3.0, 
K,: = 6.9,y~ = 1.58). Although some differ
ences between these analyses and the present 
analysis are due to the different equations used, 
a critical difference is tha,t cases 2 and 3 of 
the present analysis rely on the Hugoniot data 
of the more porous samples to constrain y, 
whereas those in the other analyses rely on 
Weaver's [1971] coefficient of thermal expan
sion. The effect of these different approaches 
can be seen by comparing case 1 with cases 
2 and 3 above. Case 1 also relies on Weaver's 
data. The preference for case 2 rests on the 
critical assumption that the Gruneisen param
eter does not vary greatly with temperature 
at very high temperatures. 
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